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ABSTRACT

In the numerical solution of operator equations Fx = 0, dis-
cretization of the equation and then application of Newton's method
results in the same linear algebraic systems of equations as appli-
cation of Newton's method followed by discretization. This leads
to the general problem of determining when the two frequently used
operations of discretization and (Frechet) differentiation applied
to a non-linear operator are commutative. A theory of discretiza-
tion processes is developed here which proves that for a wide class
of operators of interest in applications, discretization and dif-
ferentiation indeed "commute". The fundamental concept of the
theory is a distinction between the discretization of the linear
spaces involved and the replacement of the infinitesimal parts of
the operator. F, i.e., those parts involving, e.g., differentiation
and integration, by a discrete analogue. Using this distinction in
an abstract way a "complete" discretization process is defined
precisely and the cited commutativity results are proven. The

results are then applied to Newton's method.
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On Discretization and Differentiaticn of Operators

with Applicaticn to Newton's Methed

by James M. Ortega and Werner C. Rheinboldt

l. Introducticn.

Let
(1) F(x) =0
represent a non-linear integral or differential equation. A common
approach to the approximation cf a solution of (1) is the following
(see, e.g., Collatz [1] ): First, discretize (1), that is, associate
with x a vector %€R" whose comporents approximate x at n (grid)
points, and then replace integrals by guadrature sums and deriva-
tives by difference quotients inveclving only the components of X.
As a result of this discretization, (1) is replaced by a system of

n nonlinear equations in n unknowns:

(2) F(X) = 0.
Assume now that this system can be solved by Newton's method,

and introduce the "Newton®-function

(3) N(X,7) = F'{X)§ + F(R),
where F'(X) is the Frechet-derivative {Jacobian matrix) of F at R.
If X is an approximation to a sclution of (2) then a correction ¥

to X is computed as the sclutiocn of the linear algebraic system

(4) N(x,y) = 0.

Alternately, it may be possibkble to apply the (generalized)



Newton method directly to (1) (see, e.g., Kantorovich [2] or
Kantorovich and Akilov [3] ). Then, of course, the Newton correc-
tion y to an approximate solution x of (1) is obtained as a solution

of the linear operator equation

(5) N(x,y) = F'(x)y + F(x) = 0.

If F(x) = 0 represents, for example, an integral equation, (5) is
an integral equation for y. In general, it is necessary to apply
approximation methods to solve this linear operator equation, and
if (5) is discretized there results again a system of linear alge-

braic equations:

(6) N(%,§) = O.

A natural question is now the following. Is it better, in
some still to be specified sense, to discretize first and then
apply Newton's method, or, rather, to apply Newton's method first
and then discretize? An answer to this questién involves many as-
pects, such as the ease of obtaining discretization error bounds,
and our concern here is only with the following observation: Under
certain rather general conditions it turns out that the equations
(4) and (6) are identical, provided the discretizations are carried
out in the same way. In other words, as far as the final linear
algebraic equations are concerned, it makes no difference whether
Newton or discretization is applied first; loosely speaking, Newton
and discretization "commute". However, a little reflection shows

that this observation concerns Newton's method only incidentally,
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and that basically the central question is when the operations of
discretization and differentiation "commute".

In Section 2 we shall describe a general setting for an investi-
gation of this commutativity question and give in detail two concrete
examples. In Section 3 we present a complete answer for a certain
limited class of operators, and ,in Section 4, this in turn will
be the basis for an extension of the theory to classes of operators
that are of interest in applications. Finally, in Section 5 we
return to Newton's method as an example of the application of our

results; this will make precise the discussion in this introduction.

2. Notation and Examples

Throughout this paper, X, Y, etc. shall always denote real or
complex Banach spaces, and E(X,Y) shall be the usual Banach space
of all bounded linear operators with domain X and range Y. We shall
let Q(X,Y) denote the collection of all mappings F:D(F) ¢ X - Y with
a non-empty domain D(F) in X and range in Y. As usual F € Q(X,Y)
shall be called Frechet differentiable at an interior point x € D(F)

if there exists a bounded linear operator F'(x) € E(X,Y) such that

\\i\i\To H_'Il]\'\' | F(x+h) - F(x) - F'(x)hn| = o.

In our discussion it will freguently be necessary to stress that F'
is a function of two variables, and accordingly, we shall use the

notation F'(xl;xz) and.F'(xl)x interchangeably. If we define

2
D'(F) «¢ D(F) to be the set of all interior points x € D(F) at which

F'(x) exists, then F' € Q(XxX,Y) and has domain D(F') = D'(F)xX.
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(k)

More generally, we can introduce the sets D (F) (k=1,2,...) of

(k)

all interior points of D(F) at which the kth derivative F exists.

+
(k) is an element of Q(Xk l,Y) with domain D(F(k)) = D(k)

Then F (F)xxk,
where Xk denotes the product space XxXX....xX (k times). FinalL%
we denote by Q'(X,Y) the set of all operators F € Q(X,Y) such that
D'(F) is not empty.

Before proceeding with our general development in the next
section, we give in the remainder of this section two concrete

examples that will illustrate the commutativity of discretization

and differentiation.

Example 1l: Set X = Y = ¢[0,1] and let F:D(F) € X - Y be the integral

operator

1
(7) (Fx) (s) = £(s,x(s)) + [ g(s,t,x(t))dt.
0

Here the real-valued function f of the two variables s and x, to-
2

. . . . . _ of _ o f .
gether with its partial derivatives f2 = 3% and f22 = g;z , 1is

. . . 2
assumed to be defined and continuous on some open domain D(f) < R”,

and similarly g, together with 95 and 935 shall be defined and con-
tinuous on the open set D(g) c R39 Then

D(F)= D' (F)= {xEC[O,l] | (s.x(s))e D(£), (s,t,x(t)) € D(g), Oés,tél}.
In particular, if D(f)=[0,l]x(-=,+») and D(g)=[0,17x[0,1l]x (-, +=)

then D(F) = D' (F)

c[{0,1]. For x € D'(F) and h € X, F'(x;h) is

given by

1]

1
(8) (F'(xih))(s) = £,(s,x(s))h(s) + [ g,(s,t,x(t))h(t)at.
0
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We choose grid points Oés,<...<sn§l, ti=si (i=1,..,n) and gquadrature

weights aj (j=1,..,n) and take as discrete analogues of (7) and (8),

n
+ i=1,...
(9) E(s;x(s)) +) aggls; tox(e))), ({=l,....n),
j=1
and
n
+ i=1,.., .
j=1
Now consider X = Rn and the operator f:D(E) c X - X defined by
n
(11)  (FR), = £(s,%,) +zajg(si,tj,xj), (i=1,...,n).
3=1

It is clear that

D(F)= D' (F)= {% ¢ &" | (s; %;)€D(£), (s;.,t,.%,)€ D(g), i.3=l,....n},

and for X € D'(F) we find that
n

(12) (F'(®:h)), = £,(s. & )n, +) @yg, (s, .t
j=1

,%.)h., (i=l,..,n).
J J) J ( )

Hence, under the correspondence x(si) = ii' h(si) = Ei (i=l,...,n),

we see that (9) and (11), as well as (10) and (12) are identical.
In other words, the discretized form of F' and the derivative of the
discretized operator F are the same.

Proceeding in an analogous manner, it is easy to see that the

same result holds for integral operators in several variables, e.g.,

1 .1
(Fx) (s,t) = f(s,t,x(s,t)) + f g(s,t,g,n,x(g,n))dEdn.
0" 0

Example 2: As usual, let X = C2[O,l] denote the Banach space of all

twice continuously differentiable real-valued functions on [0,1]

with the norm
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x| = max[ sup |x(t)|, sup |x'(t)], sup |x"(t)|].
O=t=1 O0=t¢=1 Oo=t=1

Let Y = C[0,1] and define the differential operator F:D(F) € X =» Y

by

(13) (Fx)(s) = £(s,x(s),x"(s)), s € [0,1],

where f:D(f) < R3 - R, together with its partial derivatives f2,
f22, f3, f23, f33, is assumed to be defined and continuous on the

open set D(f) < R3.

If we take
D(F) = D'(F)= {x€xX |(s,x(s),x"(s))€ D(£), 0sssl, x(0)=x(1)=0}

then clearly for x € D'(F),

(14) F'(x:h)(s) = fz(S.X(S),X"(S))h(S) + f3(s,X(S).X"(S))h"(S)-

Set A = l/(n+l),si=iA (i=0,1,...,n+l) and
(6%%) (s.) = —i-[x(s )-2x(s)+x(s,_ )], (i=l,...,n)
i A2 i+l i i-171" ! e
and take as the discrete analogues of (13) and (14)

(15) £(s;, x(s;), (6%x)(s;)), (i=l,....n),

and

(16) £, (s,.x(s,), (5°%) (s,))h(s;) + £ (s, ,x(s,), (6°%) (s,)) (6°h) (s,) .

Now define the discretized operator E:D(E) c X - i,(i = Rn),
by
(17) (FR), = f(s, %, ,6°%,), i=1,...,n),
i 171 i
where

2 1 - - L
8 X, = Z@ [§i+l - 2xi + xi—l]' (i=1,...,n),



and
D(F)= D' (F)= {e&" | (s,%,,6%% )eD(£), i=1,...,n, X =%_, =0}.
Then for X € D'(F) and i=1l,...,n
(18) (F'(%:0)), = £ (s,,%,,6°%.)h, + £_(s.,%..6°%,)6°0,,
1 27171 171 3711 i 1
and again under the correspondence x(si) = §i (i=0,1,...,n+l) we

see that (16) and (l8) are identical.
This result also holds for more general ordinary and partial

differential operators as, for example,

(m)

(19) (Fx)(s) = f(s,x(s),x'(s),...,x (s)),
and
OX amx
(20) (Fx)(s,t) = f(s,t,x(s,t), gg(s,t),...., ggﬁ(s,t)),

and - when combining the results of Examples 1 and 2 - also for

integro-differential operators, such as

1
(21) (Fx) (8)=£ (5,5(8) , ..., x " (s)) + [Tats,taxte),ooox™ @))ae.
0

3. Space Discretization and Induced Operator Discretization

In order to begin the general discussion of our commutativity
question posed in the previous two sections, let us consider the
following setting for the discretization:

Let X and Y be two Banach spaces and assume that two other
Banach spaces X and Y represent discretized versions of X and Y,
respectively. Usually X and Y are finite-dimensional, but here
we do not assume this. The spaces X and i, and similarly Y and Y,

are assumed to be connected by "discretization mappings ¢ € E(X, X)
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and § € E(Y, Y) with the property that ¢ X = X and VY = Y.

It is usual in theoretical investigations of discretization
to consider some fixed operator F € Q(X,Y), together with a "dis-
cretized" operator F € Q(X, ¥) and to assume that F is "close" to

F in some sense. For example, Kantorovich [2] assumes that

NF (px) = $(Fx))| = ellx|l, x € D(F).

Here we will not be concerned with the "approximation" of F by F,
but our interest is rather in the formal structure of the discreti-
zation process itself.

The discretization of operators such as those of Examples 1
and 2, involves of course not only the replacement of the spaces
X and Y by X and Y, but more importantly, the replacement of the
operations of integration and differentiation by their discrete
analogues. We shall postpone to Section 4 any consideration of
these latter replacements and we shall consider in this section

only the following very special class of operators.

Definition 1. Let the mappings Py € E(Xk,ik), (k=1,2,...) be defined

by
@k(xl,....,xk) = (@xl'QXZ"""QXk)f

Then if G € Q(Xk, Y), we say that G is discretization-compatible

v

(or d-compatible for short), and write G € D(@k), if @ku = Py
for u, v € D(G) implies that §(Gu) = {(Gv).

We note that in Example 1 we have X =Y =R and

p(x) = y(x) = (X(sl),.---.X(sn)).
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Of course the operator F of (7) is in general not d-compatible, since

this would mean that u(si) = v(si), i=l,...,n, implies that

1 1l
f(si,u(si)) + OJ g(si,t,u(t))dt = f(si,v(si)) + OI g(si,t,v(t))dt.

Note, however, that for g = 0 the operator F is trivially d-compatible.
Moreover, if in this case {(x) = (x(tl),...,x(tn)) is chosen indepen-
dently of ¢, then F is d-compatible if and only if m = n and

ti = si(i=l,...,n), i.e., if and only if ¢ = §.

Now for each G € D(@k), the operator
(22) G:D(G) = ¢, (D(6)) Xk - ¥, Gk = y(6x), X = 9%, X € D(G),

is well-defined and we have a natural association of operators in
D(@k) with certain operators in Q(XX, ¥). That is, the space dis-
cretizations Py and § induce "operator discretizations" in the

class D(@k).

Definition 2. The mapping

(23)  #,:0(3,) € Q(x",¥) -~ Q(F,¥), 8,6 = &, D(3)= o, (D(E))

where G is given by (22), shall be called an operator discretiza-

tion mapping and G shall be called a $-discretization of G.

In principle, these definitions are statements about quotient

{xEXklcpkx=0}, N(¢)={y€Y|¢y=0},

Ak k A ,
and let X = X /N(mk), Y = Y/N(y) denote the quotient spaces. Then

mappings: Define N(wk)

G € D(ék) assures the existence of a quotient mapping
~ . Ak PN
G:D(G)/N(cpk) c X -Y.

Ak — ~ — . R
But, X and Xk as well as Y and Y are linearly homoemorphic; hence
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G induces in the natural way a mapping from XK into ¥, and this
mapping is just the ¢-discretization G of G.

In line with this, the following lemma, proven here for complete-
ness, is in essence a well-known result in the theory of quotient
mappings. Its content is that if G is a bounded linear operator in
one of its variables for fixed values of its other variables, then

the same is true of @kG.

Lemma l: Let G € D(@k) and G = @kG. If for fixed xj € X, j#i,

PAPD 9

¢; = 6lx i+l

1 Xy g """Xk) € E(X,Y), then

L

Il

G(mxl,....,@Xi_l,',¢xi+l,....,¢xk) € E(X,Y).

Proof: The linearity of the operator L is evident; to show that it

is continuous, note first that

gl = 11 (2,6) (gxy oo vy g o oy o) |

Il

Hw(G(xl,...,xi_l,x,xi+l,...,xk))H

A

ol Nl =l = e %,

which shows that the linear operator Lg from X into Y is continuous.
. . .z -1 -1 -1

Thus, if S is any open set in ¥, the set (L¢)( >S = ¢( )(L( )s)

is open in X. But since ¢ is linear, continuous and onto X, it

(-1)

follows from the interior mapping principle that L S is open.
Hence, L is continuous and L € E(X,Y).
For the sake of simplicity we now restrict our attention to the

classes D(él) and D(@z). The following lemma says in essence that

d-compatibility is preserved under differentiation.
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Lemma 2: Let G € D(@l) N Q'(X,Y); then G' ¢ D(@z).

Proof: Let u = (ul,uz) and v = (vl,vz) be in D(G') with Pu = @, V.

Then u,,v, € D'(G) and for t sufficiently small u_+ tu., v.+ tv.€ D(G).

1’1 1 2 1 2
Thus, by definition,

1
G'(ul,uz) = *E-[G(ul + tu2) - G(ul)] + Ei(t),
and 1
G (vy.vy) = Helv, +tv)) - Glv))] + € (¢),
where Hgi(t)u - 0 for t-0 (i=1,2). Since G € D(@l) and
cp(ul + tu2)= cp(vl + tv2),

we then have

w[G'(ul,uz)— G'(vl,vz)] =‘%~¢[G(ul+ tuz)- G(vl+:tv2)] +

+rile(u)- 6(v) T + 4lg ()= £(6)] = 4L £ (£)- € (8)7.
Hence,

(24 Il6" (a,uy) - &' (v w01l = Il g o)) + 16 o).

But the left side of (24) is independent of t while the right
side goes to zero with t. Hence w[G'(ul,uz)] = ¢[G'(vl,v2)], i.e.,
G' € D(@z).

The following theorem is the first commutativity result and
the relation (25) is typical of the further results we shall obtain

in the next section.

Theorem l: Let G € D(@l) N Q'(X,Y). Then (@lG)' is defined on

D(2,6') = ,(D(G')) and

(25) (@lG)' = §2G' on D(§2G').
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Proof: By Lemma 2, G' ¢ D(@z) and by definition
D(2,G') = 9,(D(G")) = ¢(D'(G)) x X. Let x = (x,,h) € D(G'); then
Xy € D'(G) « D(G). By Lemma 1, (§2G')(§l,ﬁ) is a bounded linear
operator in h for fixed %., and we have to show that

1

lim 1

(26) mj-0 TAT

1(2,6) (R + h) - (2,6) (%)) - (2,6") (k. h)]| =0
where il = m(xl).
Form again the quotient-space

x=x/Np) ={x | 2=9"x), % e x}.

~

X is a Banachspace under the usual norm ||&|| = inf[||x|||x € %], ana

Il

. -~ = . A AN ~ _l w— -_ .
the induced mapping $:X - X defined by & (X) ¢(@( )(x)) =X is
linear, continuous, one-to-one, and onto X. Hence ® has a bounded

. =1 - - - .
inverse & and for any h € X, (h # 0) there always exist

h € m(_l)(ﬂ) C X such that

0 < |l = nl| = 2|0l = 2/87Y J&).

JIA

Selecting only such h, we obtain for any h € X such that

X +h € D(&,G),
1
T H(@lG)(¢(xl+ h)) - (2,6)(9x,) - (ézG')(¢xl.¢h)H=
=y Iviete ) - yletx))) - 46" (e )| =

-1
2HﬁﬂHHw I lo(x + 1) - Glx)) - ' (x,sh)]].

1A

If now h - 0, then clearly h - 0 for our choice of h € ¢(—l)(ﬁ)
and hence the right hand side tends to zero by assumption. This

completes the proof.
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It is interesting to note that in general D((@lG)') strictly

includes D(@ZG'), i.e., (@lG)' is an extension of §2G'. Consider,

for instance, the special case of Example 1 when g = 0 and

2/3 2/3

f(s,x) = x , i.e., (Fx)(s) x(s) . Then

M

D'(F) = {x € c[0,1] | x(s) #0,0 5 s = 1}

and therefore
D(QZF ) = {(xl,...,xn) |xi > 0 or X; < 0 for all 1} X X
while

D((8,;F)') = {(&...-.% ) | % #0, i=l,....n} x %.

Theorem 1 also shows that in essence we have only commutativity
between the generic terms "differentiation" and "discretization".

Actually just as the discretization operators 3%_,3

1%, Operate on dif-

ferent classes of functions, the same is true for differentiation.
In fact, if we denote differentiation on X and X by 8§ and 9, res-

It shouldialso be noted that Theorem 1 can be extended to m-

times differentiable functions with the result that (@lG)(m)= ) +1G(m)
m

on some suitable domain. We omit the details here.
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4. Complete Discretization

As mentioned in Section 3, the operators (7) and (13) in
Examples 1 and 2 are not in general d-compatible and, moreover, the

application of the mapping &, alone could certainly not be expected

1

to produce the discretized forms (9) and (15). We consider in this
section the replacement of the operations of integration and dif-
ferentiation by discrete analogues and then combine these replace-
ments with the &-discretization of Section 2.

We consider first a class of operators corresponding to the
case discussed in Example 1. If we introduce there the intermediate
Banach space Z = C([0,11x[0,1]) then the operator F can be considered
as a composition of the form F = KG where G:D(G) € X - Z is the

operator

(27) (6x)(s,t) = £(s,x(s)) + g(s,t,x(t)),

and K € E(2,Y) is the integral operator

(28) (Kz) (s) = Jl z(s,t)dt.
0

The replacement of integration‘by quadrature amounts to the replace-

ment of the operator K by another operator Kﬁ € E(Z,Y) of the form

m
(29) (K 2) (s) = zajz(s,tj).
j=1

Note that Kd is an operator on the same space as K and not on a dis-

cretized space.

Clearly there are many possible operators K., of the form (29)

d

depending on the choice of the quadrature weights aj and the grid
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points tj. Whereas usually only those aj and tj will be selected,

which assure that Kd is "close" to K, our concern here is with the

formal replacement of K by K . What shall be required of Kd is merely
d

that the operator F_ = KdG be d-compatible and this is a restriction

d
only on the grid points tj. Thus if o¢x = {x = (x(sl),...,x(sn))’

we choose m = n and tj = sj, j=1,...,n; then Fd has the form
n

(30) (Fgx) () = £(s.x(s)) +) ajg(s,t (),
j=1

and a ®-discretization of Fd gives the final discretized form (9).
Generally for each K € E(Z,Y) and each positive integer k, we

define the class of operators

(31) 3 (K) = {F:D(F)cxk~y | F=xG, GEQ(Xk,Z), D(F)=D(G)}.

Definition 3: For any two K’Kd € E(Z,Y) the mapping

(32) Ykzgk(x) - 3k(Kd), v.F = Yk(KG) = K G,

shall be called a prediscretization mapping for Sk(K).

Clearly these mappings Y. have no a-priori relation to dis-

k
cretization in the usual sense; this would depend on the choice of
the two operators K and Kd' However, the structure of this replace-
ment process corresponds to our intuitive notion of discretization
processes.

The following lemma, an easy consequence of the chain rule,

gives a commutativity result for pre-discretization mappings.

- 1 = :3; —b:}
Lemma 3: For given K,Kd € E(Z,Y) and k 1,2, let Yk k(K) k(Kd)
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be pre-discretization mappings. If F = K G € El(K) and G € Q'(X,2)

then F' € 32(K) and (YlF)' = YZF' on D(F') = D(G').
Proof: By the chain rule we have D(F') = D(G') and F' = (KG)' = KG'.
Hence F' € 32(K) and YZF = KdG = (KdG) = (YlF) on D(F').

We now combine prediscretization and $-discretization.

Definition 4: For given pre-discretization mappings Yk:3k(K) - 3k(Kd)
and given %-discretization mappings @k as in Definition 2, define

the following subclasses of Sk(K):

(33)  D(¥,) = {F €3 (K) | ¥,F ¢ D(@k)}, kK =1,2,.0. .

k

Each ék is defined on the class @k(D(Yk)) and accordingly let

(34) ﬁk(Kd) = {E:D(F) cx®-% | F= 8 Uy F FeD(Yk)}.

Then for each k the composite mapping
(35) Yk:D(Yk) c Jk(K) ~:}k(Kd), ¥, = QkYk'

will be called a complete discretization mapping on2¥k(K).

Given K, K., and &% , the mapping ¥

3 K X gives a rigorous description

of the discretization process for a subclass D(?k) of operators in
Ek(K). The following theorem then contains a commutativity result

analogous to Theorem 1l:

: = V. :D(V F - & (
Theorem 2 For k=1, 2, let Yk D(Yk) c k(K) k(Kd) be complete
discretization mappings as in Definition 4. If F = KG € D(?l) and

G € Q'(X,2), then F' ¢ D(?z) and

(36) (?lF)' = ¥2F' on o, (D(F')),
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Proof: VY_F € D(@l) since F € D(?l),and applying Theorem 1 to VY. F

1 1
we have
v [ J— t - [} '
(YlF) = él(YlF) éz(YlF) on @2(D((Y1F) )).
But D((YlF)') = D{F') and’by Lemma 3, (YlF)' = YZF'. Altogether there-
fore
(YlF) = §2Y2F = YZF on mz(D(F )).

Let us next consider composite operators of the form F = GL
where G is again some non-linear operator and L is a bounded and
linear mapping. The differential operator (13) of Example 2 has
this form, as can be seen if we introduce W = ¢[0,1] x ¢c[0,1], define
L € E(X,W) by Lx = (x,x") and let G:D(G) € W - Y be given by
G(wl,wz)(s) = f(s,wl(s),wz(s)).

For operators of the form F = GL we can proceed in a completely
analogous manner as before, but some caution is necessary with res-
pect to the definition of the domains of the operators. For the sake
of clarity, this slight complication prompted the separate treatment
of the two types of operators. It will be readily apparent how the
theory can be formulated for more general operators, e.g., of the
type F = KGL.

In general, let W be any Banachspace. For each L € E(X,W)

define the linear operators Lk € E(Xk,wk) by
(38) Lk(xl”""xk) = (LXl”"’LXk) (k=1,2,...),

and the operator classes
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k .. _ k

(39) G, (L) = {Feoxy) | F=cr. cecow 1}
. k .

Note that GLk € Qk(L) only if D(G) N LkX is not empty.

As before, we introduce for any two L, L. € E(X,W) the mapping

d
(40) YkzD(Yk) c Qk(L) - Qk(Ld), Yk(GLk) = GLg 1
where
(41) D(Y, ) = {F =GL € G (L) | D(G) N L x* not empty}
k k a,x

and call Yk a pre—discretization mapping on the subclass D(Yk) of

operators of Qk(L). Note that here the pre-discretization mapping
is no longer defined on the entire operator class qk(L) as was the

pre-discretization ¥, of Definition 3 for the class Sk(L).

k

Corresponding to Lemma 3 we then have:

Lemma 4: For given L, L. € E(X,W) and k=1,2 let Qk(L), Qk(Ld) and

d

Yk be defined as in (39) and (40). Let F = GL € D(Yl), where

G € Q'(W,Y), and assume that

(42) D, = {xeX | Ix € D*(G), L._x € D'(G)}

d

is not empty. Then F' € D(Yz) and

4 ] =

(43) (YlF) YZF on D0 x X

Proof: For x = (xl,xz) € DO X X we have by definition that

L2x € D(G') and by the chain rule that F' = (GL)' = G'L2. Hence

F' € QZ(L) and, moreover, F' € D(Yz) since D(G') N Ld 2X2 is not

empty. Hence, for all x € DOXX
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(YlF ) = (GLd) =G Ldl2 = YZ(G LZ) = ‘YZF .
As before, we consider now the $-discretization mappings @k,

and for each k define the classes of operators

(44) D(?k) = {F € D{Y¥,) I v.F € D(ék)},
and
(45) G (L) = {F(F) c B =~ T | F=ay,F FeD(y)}

Then the mapping
(46) ¥, :D(¥,) © G (L) = G (Ly), ¥y =&Y

shall again be called a complete discretization mapping for the class

D(?k) < Gy (L)

In analogy with Theorem 2 we now obtain

Theorem 3: For k = 1,2, let Qk(L), Y D(?k) and ¥. be defined as

k' k
in {(39), (40), (44) and (45). Suppose that F = GL € D(?l) and

assume that the set D_. of (42) is not empty. Then F' € D(?z) and

0
(47) (¥;F)' = (¥, F') on P, (DyxX)
Proof: From Lemma 4 it follows that F' € D(Yz) and that (YlF)' = YzF'

on D xX. Since F € D(?l) implies that Y

lF € D(él), we then obtain

from Lemma 2 that (YlF)' € D(@z) and therefore that Y2F' € D(@z).




Hence F' € D(?z). But by Theocrem 1
' o= 3¢ { ! =
(@l(YlF)) éz(YlF, cn mz(D\YlF) ) ¢2(Doxx)

- and this completes the proof.

g

As mentioned before, it is now simple to combine Theorems 2 and
3 to obtain corresponding results for operators of the type KGL, e.g.,
for integro-differential operators of the form (21), and for more
general composite operators. Another simple generalization gives
results for higher order derivatives. We shall not detail these

generalizations here.

5. Application to Newton's Method

In this Section we return to the observation mentioned in the
Introduction that discretization and Newton's method "commute".
The results obtained in the previous sections now allow a precise
formulation of this observation.

For the sake of simplicity, let us restrict ourselves to the
class of operators El(K) defined in (31), i.e., operators of the

type F = KG. Let F € D(\Tl) c ¥ (K) and Y. F = F. As in the Intro-

1
- duction, we define the "Newton"-functions of F and F by
- (48) N(x,y) = F'(x:;y) + F(x),
and
(49) N(Z,¥) = F'(X;¥) + F(X),

where evidently D(N) = D(F') and D(N) = D(F'). Then the following
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theorem states that on @2(D(F')) the complete discretization of the
Newton function N of F coincides with the Newton function of the
complete discretization F of F. This is the precise meaning of the

"commutativity" of Newton's method and discretization.

Theorem 4: Suppose F € El(k} satisfies the conditions of Theorem 2.

Let F = glF and consider the Newton functions N and N as defined by

(48 and (49), respectively. Then N € D(?Z) and

(50) EZN = § on @, (D(F'))

Procf: By assumption, F € D(¥ If F is considered as a function

).
ll

2 -
on X, i.e., F(xl,xz) = F(xl), then also F ¢ D(Yz). Moreover, from
Theorem 2 it follows that F' € D(?z} and that (?lF)' = ng'. Using
the fact that ?2 is linear on D(?Z) we have for x,y € D(F')

(Y,N) (ox,0y) = (F,F°) (pxsgy) + (F,F) (gx)

= (¥,F) " (pxs59y) + (¥;F) (px)

N{px,py)
oxr

v = | 7

and this completes the proof,

Clearly the principal reason for the validity of this theorem
is the linearity of N in terms of F and F' and the "commutativity"
of discretization and differentiation. Accordingly, the result can
be readily extended to any linear combination of a function and its

derivatives. We shall not go intc datails here.
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